Preview

Proceedings of SPSTL SB RAS

Advanced search

The scientometric analysis of scientific direction “Paleopedology“

https://doi.org/10.20913/2618-7575-2021-3-66-75

Abstract

The paper presents the scientometric analysis of the information array on paleopedology from the international databases of scientific citation Web of Science (Clarivate) and Scopus (Elsevier). The analysis results show the trends in the development of this research area over a fifty-year period and its positive dynamics; identify the countries the most actively studying paleosols, authors working successfully in this field and their affiliations, organizations financing scientific research on the topic, as well as frequently cited articles; name the language and specific composition of documents, periodicals with the greatest publication activity; demonstrates the thematic structure of documents in the information array according with the branches of knowledge (Scopus), research areas and subject categories (Web of Science). In addition, the information array on paleopedology was processed using the CiteSpace software, which is freely available to users and allows creating and analyzing co-citation networks based on information arrays selected from databases of scientific citation; it visualize the research field by building networks of document co-citation and term use, identifying research areas. The method of analyzing the document citation provides the network clusterization. By location of clusters labeled with terms from citing articles and symbolizing scientific trends, one can see how research on paleopedology has developed in the world. The results of the scientometric analysis can be useful for specialists in the field of paleopedology to optimize and coordinate research with leading experts and research centers dealing with this problem, as well as representatives of grant-giving organizations.

About the Authors

T. V. Busygina
State Public Scientific Technological Library of the Siberian Branch of the Russian Academy of Sciences (SPSTL SB RAS)
Russian Federation

Busygina Tatyana Vladimirovna, Leading Researcher, Head of the Department of Scientific Bibliography

Novosibirsk



V. V. Rykova
State Public Scientific Technological Library of the Siberian Branch of the Russian Academy of Sciences (SPSTL SB RAS)
Russian Federation

Rykova Valentina Viktorovna, Senior Researcher of the Department of Scientific Bibliography

Novosibirsk



References

1. Makeev A. O. Paleopedology: state and prospects (on Paleopedological Commission data). Pochvovedenie, 2002, 4: 398–411. (In Russ.).

2. Busygina T. V. Bibliometric analysis of the documentary information array on nanobiotechnologies based on the database “ Scopus “(Elsevier Publishing House). Bibliosfera, 2009, 4: 31–42. (In Russ.).

3. Busygina T., Rykova V. Scientometric visualisation of the documentary array on Semipalatinsk nuclear test site. DESIDOC Journal of Library & Information Technology, 2019, 39(4): 152–161. DOI 10.14429/djlit.39.4.14454.

4. Marshakova I. V. A system of communication between documents, built on the basis of links: according to the Science Citation Index. Nauchno-tekhnicheskaya informatsiya. Seriya 2. Informatsionnye protsessy i systemy, 1973, 6: 3–8. (In Russ.).

5. Chen C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of American Society for Information Science and Technology, 2006, 57(3): 359–377. https://doi.org/10.1002/asi.20317.

6. Chen C., Ibekwe-SanJuan F., Hou J. The structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis. Journal of American Society for Information Science and Technology, 2010, 61(7): 1386–1409. https://doi.org/10.1002/asi.21309.

7. Chen C. CiteSpace : a practical guide for mapping scientific literature. New York, Nova Science Publ., 2016. 178 p.

8. Fedo Ch. M., Nesbit H. W., Yuong G. M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 1995, 23(10): 921–924. DOI: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2.

9. Porter S.C., An Z.S. Correlation between climate events in the North-Atlantic and China during last glaciation. Nature, 1995, 375(6529): 305–308. DOI: 10.1038/375305a0.

10. Sheldon N. D., Tabor N. J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 2009, 95(1/2): 1–52. https://doi.org/10.1016/j.earscirev.2009.03.004.

11. Reimer P. J. Bard E., Bayliss A., Beck J.W., Blackwell P. G., Ramsey Ch. B., et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 2013, 55(4): 1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947.

12. Breecker D. O., Sharp Z. D., McFadden L. D. Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geological Society of America Bulletin, 2009, 121(3/4): 630–640. https://doi.org/10.1130/B26413.1.

13. Retallack G. J. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology, 2005, 33(4): 333–336. https://doi.org/10.1130/G21263.1.

14. Marković S. B., Bokhorst M. P., Vandenberghe J., McCoy W. D., Oches E. A., Hambach U. et al. Late Pleistocene loess-palaeosol sequences in the Vojvodina region, north Serbia. Journal of Quaternary Science, 2008, 23(1): 73–84. https://doi.org/10.1002/jqs.1124.

15. Marković S. B., Hambach U., Stevens Th., Kukla G. J., Heller F., McCoy W. D. et al. The last million years recorded at the Stari Slankamen (northern Serbia) loess-palaeosol sequence: revised chronostratigraphy and long-term environmental trends. Quaternary Science Reviews, 2011, 30(9/10): 1142–1154. https://doi.org/10.1016/j.quascirev.2011.02.004.

16. Guo Z. T., Ruddiman W. F., Hao Q. Z., Wu H. B., Qiao Y. S., Zhu R. X. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 2002, 416(6877): 159–163. https://doi.org/10.1038/416159a.

17. Maher B. A. Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 137(1/2): 25–54. DOI: 10.1016/S0031-0182(97)00103-X.

18. Buggle B., Glaser B., Hambach U., Gerasimenko N., Markovic S. An evaluation of geochemical weathering indices in loess–paleosol studies. Quaternary International, 2011, 240(1/2): 12–21. https://doi.org/10.1016/j.quaint.2010.07.019.

19. Heller F., Evans M. E. Loess magnetism. Reviews of Geophysics, 1995, 33(2): 211–240. https://doi.org/10.1029/95RG00579.

20. Stevens T., Markovic S. B., Zech M., Hambach U., Sumegi P. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial–interglacial cycle. Quaternary Science Reviews, 2011, 30(5/6): 662–681. https://doi.org/10.1016/j.quascirev.2010.12.011.


Review

For citations:


Busygina T.V., Rykova V.V. The scientometric analysis of scientific direction “Paleopedology“. Proceedings of SPSTL SB RAS. 2021;(3):66-75. (In Russ.) https://doi.org/10.20913/2618-7575-2021-3-66-75

Views: 440


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-7515 (Print)
ISSN 2712-7915 (Online)